Cultrex® Basement Membrane Matrix

Cultrex® BME is a Basement Membrane Matrix that has been developed, produced and qualified for general cell culture applications. BME is an extracellular matrix hydrogel that has been used extensively to study cell attachment, proliferation, and invasion.

Available Size(s): 1 ml, 2 x 5 ml, 5 ml Catalog Number: 3432-001-01 Category: Tags: ,

Description

Cultrex® Basement Membrane Extract (BME) is a soluble form of basement membrane purified from Engelbreth-Holm-Swarm (EHS) tumor. This extract provides a natural extracellular matrix hydrogel that polymerizes at 37°C to form a reconstituted basement membrane. Basement membranes are continuous sheets of specialized extracellular matrix that form an interface between endothelial, epithelial, muscle, or neuronal cells and their adjacent stroma and that play an essential role in tissue organization by influencing cell adhesion, migration, proliferation, and differentiation. The major components of BME include laminin, collagen IV, entactin, and heparin sulfate proteoglycans.

Cultrex® BME is a Basement Membrane Matrix that has been developed, produced and qualified for general cell culture applications.

Quality control specifications:

  • Mouse colonies are routinely screened for pathogens using mouse antibody production (MAP) testing.
  • Engelbreth-Holm-Swarm (EHS) tumor is LDEV-free.
  • PathClear® – tested negative by PCR for 17 bacterial and virus strains typically included in mouse antibody production (MAP) testing, plus 13 additional murine infectious agents including LDEV, for a total of 31 organisms and viruses.
  • No bacterial or fungal growth detected after incubation at 37°C for 14 days following USP sterility testing guidelines.
  • Endotoxin concentration ≤ 8 EU/ml by Limulus Amoebocyte Lysate (LAL) assay.
  • Protein concentration of 12 – 18 mg/ml.
  • No mycoplasma contamination detected by PCR.
  • Provided in Dulbecco’s Modified Eagle’s medium (DMEM) without phenol red, with 10 µg/ml gentamicin sulfate.
  • Gel stability tested for a period of 14 days at 37°C.
  • Biological activity determined for each lot:
    • Tube formation assay – BME promotes formation of capillary-like structures by human (HBMVEC; HUVEC) or mouse (SVEC4-10) endothelial cells.

Protocol(s)

protocol_3432-001-01

protocol_3432-005-01

protocol_3432-010-01

Material Safety Data Sheet(s)

msds_3432-001-01 Cultrex Basement Membrane Extract PathClear

msds_3432-005-01 Basement Membrane Extract PathClear

msds_3432-010-01 Basement Membrane Extract PathClear

Catalog # 3432-010-01 includes : 
Catalog Number Description Qty
3432-005-01 Cultrex Basement Membrane, PathClear® 2
Cultrex® BME Endothelial Tube Formation.

“Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases”
“Diana Romero, Zainab Al-Shareef, Irantzu Gorroño-Etxebarria, Stephanie Atkins, Frances Turrell, Jyoti
Chhetri, Nora Bengoa-Vergniory, Christoph Zenzmaier, Peter Berger, Jonathan Waxman, and Robert Kypta”
Carcinogenesis, Jan 2016; 37: 18 – 29
http://carcin.oxfordjournals.org/cgi/content/abstract/37/1/18

Real-time monitoring of NKCC2 endocytosis by total internal reflection fluorescence (TIRF) microscopy
Ankita Bachhawat Jaykumar, Paulo S. Caceres, Ibrahim Sablaban, Bakhos A. Tannous, and Pablo A. Ortiz
Am J Physiol Renal Physiol, Jan 2016; 310: F183 – F191
http://ajprenal.physiology.org/cgi/content/abstract/310/2/F183

Cabozantinib (XL184) Inhibits Growth and Invasion of Preclinical TNBC Models
“Mansoureh Sameni, Elizabeth A. Tovar, Curt J. Essenburg, Anita Chalasani, Erik S. Linklater, Andrew
Borgman, David M. Cherba, Arulselvi Anbalagan, Mary E. Winn, Carrie R. Graveel, and Bonnie F. Sloane
Clin. Cancer Res., Feb 2016; 22: 923 – 934”
http://clincancerres.aacrjournals.org/cgi/content/abstract/22/4/923

3-Dimensional Patient-Derived Lung Cancer Assays Reveal Resistance to Standards-of-Care Promoted by Stromal Cells but Sensitivity to Histone Deacetylase Inhibitors
David Onion, Richard H. Argent, Alexander M. Reece-Smith, Madeleine L. Craze, Robert G. Pineda, Philip A. Clarke, Hari L. Ratan, Simon L. Parsons, Dileep N. Lobo, John P. Duffy, John C. Atherton, Andrew J. McKenzie, Rajendra Kumari, Peter King, Brett M. Hall, and Anna M. Grabowska
Mol. Cancer Ther., Apr 2016; 15: 753 – 763
http://mct.aacrjournals.org/cgi/content/abstract/15/4/753

Suppression of ER{beta} signaling via ER{beta} knockout or antagonist protects against bladder cancer development
Hsu, I., Chuang, K.L., Slavin, S., Da, J., Lim, W.X., Pang, S.T., O’Brien, J.H. andYeh, S.
Carcinogenesis, Mar 2014; 35: 651 – 661
http://carcin.oxfordjournals.org/cgi/content/abstract/35/3/651

The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor,
Francesca Spinella, Valentina Caprara, Roberta Cianfrocca, Laura Rosanò, Valeriana Di Castro, Emirena Garrafa, Pier Giorgio Natali, and Anna Bagnato
Carcinogenesis, Apr 2014; 35: 840 – 848
http://carcin.oxfordjournals.org/cgi/content/abstract/35/4/840

Inhibition of Tumor Growth and Angiogenesis by SP-2, an Anti-Lectin, Galactoside-Binding Soluble 3 Binding Protein LGALS3BP Antibody
Sara Traini, Enza Piccolo, Nicola Tinari, Cosmo Rossi, Rossana La Sorda, Francesca Spinella, Anna Bagnato, Rossano Lattanzio, Maurizia D’Egidio, Annalisa Di Risio, Federica Tomao, Antonino Grassadonia, Mauro Piantelli, Clara Natoli, and Stefano Iacobelli
Mol. Cancer Ther., Apr 2014; 13: 916 – 925.
http://mct.aacrjournals.org/cgi/content/abstract/13/4/916

Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Matrix Proteins Specify Different Capabilities To Modulate B Cell Growth
Caccuri, F., Giagulli, C., Reichelt, J., Martorelli, D., Marsico, S., Bugatti, A., Barone, I., Rusnati, M., Guzman, CA., Dolcetti, R. and Caruso, A.
J. Virol., May 2014; 88: 5706 – 5717.
http://jvi.asm.org/cgi/content/abstract/88/10/5706

The Nuclear Receptor Peroxisome Proliferator-activated Receptor-β/ (PPARβ/ ) Promotes Oncogene-induced Cellular Senescence through Repression of Endoplasmic Reticulum Stress
Bokai Zhu, Christina H. Ferry, Lauren K. Markell, Nicholas Blazanin, Adam B. Glick, Frank J. Gonzalez, and Jeffrey M. Peters
J. Biol. Chem., Jul 2014; 289: 20102 – 20119.
http://www.jbc.org/cgi/content/abstract/289/29/20102

PI3K/mTOR Dual Inhibitor VS-5584 Preferentially Targets Cancer Stem Cells
Vihren N. Kolev, Quentin G. Wright, Christian M. Vidal, Jennifer E. Ring, Irina M. Shapiro, Jill Ricono, David T. Weaver, Mahesh V. Padval, Jonathan A. Pachter, and Qunli Xu
Cancer Res., Jan 2015; 75: 446 – 455.
http://cancerres.aacrjournals.org/cgi/content/abstract/75/2/446

The MEF2–HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro
Andrea Clocchiatti, Eros Di Giorgio, Giulia Viviani, Charles Streuli, Andrea Sgorbissa, Raffaella Picco, Valentina Cutano, and Claudio Brancolini
J. Cell Sci., Nov 2015; 128: 3961 – 3976.
http://jcs.biologists.org/cgi/content/abstract/128/21/3961

Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases
Diana Romero, Zainab Al-Shareef, Irantzu Gorroño-Etxebarria, Stephanie Atkins, Frances Turrell, Jyoti Chhetri, Nora Bengoa-Vergniory, Christoph Zenzmaier, Peter Berger, Jonathan Waxman, and Robert Kypta
Carcinogenesis, Nov 2015; 10.1093/carcin/bgv153
http://carcin.oxfordjournals.org/cgi/content/abstract/bgv153v2

MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells
Lijs Beke, Cenk Kig, Joannes T. M. Linders, Shannah Boens, An Boeckx, Erika van Heerde, Marc Parade, An De Bondt, Ilse Van den Wyngaert, Tarig Bashir, Souichi Ogata, Lieven Meerpoel, Aleyde Van Eynde, Christopher N. Johnson, Monique Beullens, Dirk Brehmer, and Mathieu Bollen
Biosci. Rep., Nov 2015; 35: e00267.
http://www.bioscirep.org/cgi/content/abstract/35/6/e00267

“Combined Effects of Suberoylanilide Hydroxamic Acid and Cisplatin on Radiation Sensitivity and Cancer Cell Invasion in Non–Small Cell Lung Cancer”
Jianguo Feng, Shirong Zhang, Kan Wu, Bing Wang, Jeffrey Y.C. Wong, Hong Jiang, Rujun Xu, Lisha Ying, Haixiu Huang, Xiaoliang Zheng, Xufeng Chen, and Shenglin Ma
Mol. Cancer Ther., May 2016; 15: 842 – 853.
http://mct.aacrjournals.org/cgi/content/abstract/15/5/842